

High Performance Diamond, CBN & CDX Wheels

Problem Troubleshooting

The fine grit wheel is cutting better than a coarse grit wheel?

- Is the wheel loaded up?
 - If so, it needs to be dressed according to our standards
- If the wheel was directly out of the box
 - Dress the wheel prior to putting it back on the machine
- Are the RPM's within the correct range for the wheel?
- Are the wheels the same bond?
- > The wheel is not lasting as long as it used to?
 - Is the wheel being used for the same application?
 - Does the wheel sound the same?
 - Belts on the machine could be slipping
 - Clamping could be coming loose causing vibration in the workpiece.
 - Is the clamp close to the periphery of the blade?
 - Is the wheel slipping on the arbor?
 - Are the RPMs dropping while grinding?
 - Is it a different carbide grade?
 - It could be spindle wear or bad spindle bearing
 - Is the bond the same or has it changed?

> The wheel is louder than it used to be?

- Is the wheel loaded or glazed over?
- Is clamping loose causing vibration and chattering in the wheel?
- \circ $\;$ Are the spindle bearings bad?
- Did the spindle speed change?
- Is it a different carbide grade?

How to fix runout on the wheels?

- Remove flanges from the wheel and clean wheel and flanges thoroughly. Put the flanges back on and check again for runout
- Check the bore hole for scoring, scratches, or defects
- Check the spindle for runout
- o Check the spindle bearings
- Dress the wheel to the arbor

The wheel is getting too hot (bluing on the part)

- Can the spindle speed be adjusted?
 Spindle speed maybe too high
 - Incorrect coolant placement
- Using the wrong coolant
- If the wheel is loading up take heavier passes
- Take lighter passes

0

- \circ Lower the concentration
- Try a coarser grit
- Are you grinding a micrograin carbide?

Your wheel is acting softer than the previous supplier's wheel

- Is the finish the same as you were getting from previous supplier
 - Grit could be finer or coarser based on supplier
 - Are the parameters the same as the previous supplier
- Is the bond color the same as old supplier
- Check the belts for slippage
- What are the RPMs?
- > The wheel is acting softer than it used to
 - \circ Check the spindle bearings
 - \circ Check for belt slippage
 - Are the RPMs decreasing during grinding?
 - Did the bond change?

High Performance Diamond, CBN & CDX Wheels

> Dressing sticks are not dressing the wheel

- The dressing stick should always be one to two grits finer than the wheel
- If it is a very fine wheel (D600 or finer) we don't have a dressing stick that is able to dress it because it will rip out the diamond

Why can't I use the same wheel if a switch from water to oil based coolant?

- Water absorbs heat and oil does not
- Oil needs a softer sharper bond
- Oil is lubricating and water is not
- Changing will cause tips to blue and the wheel not to cut

EC wheel causing more burrs

- Volts are too low
- Make sure it is a CBN wheel
- Adjust spindle speed up and down to get best finish
- Slow down the cutting process

Can I dress a metal bond wheel?

- Wheel should be self-dressing if used properly on correct material
- Would need to be reconditioned with spark erosion
- Ask us about companies that will dress your wheel for you.
- We do not have a way to dress a metal bond wheel

Hitting a gullet when facing is causing the diamond to blow out

- Set the stops better in order to avoid the gullet
- Use a smaller abrasive section such as 1/16" section instead of a 1/8"
- You may notice a burr around the edge of the diamond wheel
 - This can cause diamond to separate from the core

Causes of a poor finish and how to resolve

- Vibration in the wheel or spindle
 - Clamp the wheel a bit better
 - Make sure it isn't glazed up
 - Change the spindle bearings
- Check the belts and spindle
- \circ $\;$ Wheel should be mounted on adapter and trued
- Coolant placement could be off
- $\circ \quad \text{Coolant filtration} \quad$
- Wheel is too soft and aggressive
- $\circ\quad$ Wheel is too hard causing bouncing or vibration
- $\circ \quad \text{RPMs can vary the finish} \\$
- Excessive Dressing
 - Use less pressure on the dressing stick
- Reduce down feed or cross feed

Very general RPM range for wheels

	Cup Wheels	Peripheral
Wet Grinding		
Diamond Wheels	11V9, 12V9, 15V9, etc	1A1, 1V1, 1A1R, etc
Resin Bond	4,921 to 7,874 SFPM 25 to 40 m/s	4,921 to 7,874 SFPM 25 to 40 m/s
Metal Bond	N/A	3,937 to 5,906 SFPM 20 to 30 m/s
Vitrified Bond	2,953 to 5,906 SFPM 40 to 80 m/s	2,953 to 5,906 SFPM 60 to 120 m/s
cBN Wheels		
Resin Bond	5,906 to 9,843 SFPM 30 to 50 m/s	5,906 to 9,843 SFPM 30 to 50 m/s

	Cup Wheels	Peripheral
Dry Grinding		
Diamond Wheels	11V9, 12V9, 15V9, etc	1A1, 1V1, 1A1R, etc
Resin Bond	2,756 to 3,543 SFPM	2,756 to 3,543 SFPM
	14 to 18 m/s	14 to 18 m/s
cBN Wheels		
Resin Bond	2,953 to 5,906 SFPM	2,953 to 5,906 SFPM
	15 to 30 m/s	15 to 30 m/s

